

DoubleML

Sensitivity Analysis for Causal ML: A Use Case at Booking.com

Philipp Bach, Victor Chernozhukov, Carlos Cinelli, Lin Jia, Sven Klaassen, Nils Skotara, Martin Spindler

KDD Barcelona, *Causal Inference & ML in Practice* Workshop

August 26, 2024

University of Hamburg, MIT, University of Washington, Booking.com, Economic AI

Outline

Motivation: Sensitivity Analysis & Use Case

Estimand of Interest: ATT

Sensitivity Analysis in a Use Case at Booking.com

Summary and Outlook

Motivation: Sensitivity Analysis & Use Case

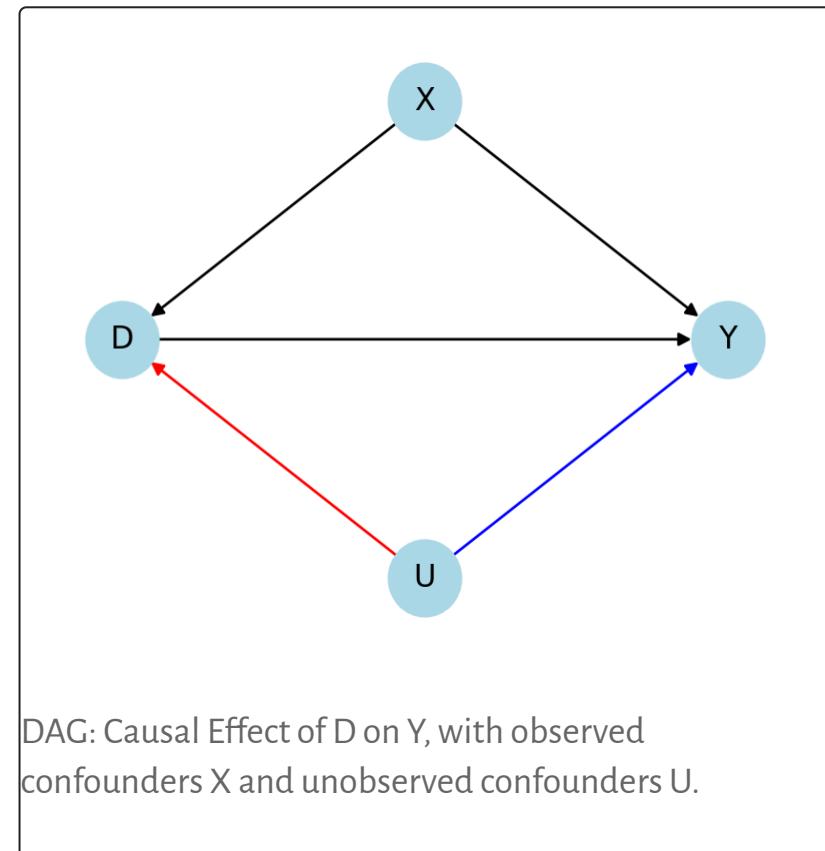
Sensitivity Analysis

- Causal inference is inherently based on untestable assumptions
- Standard assumption in observational studies
Unconfoundedness: Treatment assignment is independent of potential outcomes given covariates (see details [here](#))
- 🧠 Assumption might be very strong and difficult to justify in practice (unobserved confounding)

➡ **Sensitivity analysis** as a tool to establish trust in our estimates

🤔 How much can we trust our estimates when it is violated?

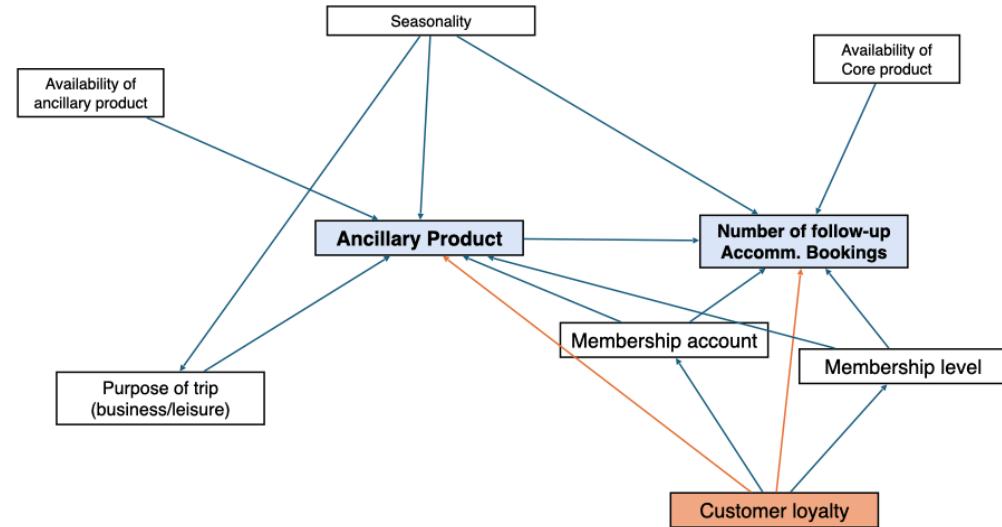
► Code



Motivation: Sensitivity Analysis & Use Case

Use Case

- Key question: *What is the causal effect of purchasing an **ancillary product** (taxi transfer, flight, etc.) on **follow-up bookings**?*
- Analysis based on observational data (past transactions)
- Major concern: Unmodelled customer loyalty might affect users' propensity to purchase ancillary products and to make follow-up bookings → Upward bias



Stylized DAG from use case at Booking.com.

Estimand of Interest: ATT

Average Treatment Effect on the Treated (ATT)

$$\theta_0 = \mathbb{E}[Y(1) \mid D = 1] - \mathbb{E}[Y(0) \mid D = 1].$$

- ATT measures the average impact on follow-up bookings that results from booking an ancillary product
- The ATT can be *identified* under the assumption of *unconfoundedness* (see details [here](#))
- Sensitivity analysis based on Chernozhukov et al. (2022) and implemented in **DoubleML** for Python (Bach et al. 2022)

Estimand of Interest: ATT

Sensitivity Analysis (Chernozhukov et al. 2022)

- *Long* parameter (if we had access to the unobserved confounder(s))

$$\theta_0 = \mathbb{E}[Y|D = 1] - \mathbb{E}[\mathbb{E}[Y|D = 0, X, U]|D = 1].$$

- *Short* parameter (only observed data)

$$\theta_s = \mathbb{E}[Y|D = 1] - \mathbb{E}[\mathbb{E}[Y|D = 0, X]|D = 1].$$

- **Omitted variable / confounding bias:**

$$\text{bias} = |\theta_s - \theta_0|$$

Estimand of Interest: ATT

Sensitivity Analysis (Chernozhukov et al. 2022)

- Idea of sensitivity analysis: Parametrize confounding in terms of sensitivity parameters and assess confounding bias in different scenarios
- Extensive literature from statistics, econometrics and computer science (see [References](#))
- Chernozhukov et al. (2022): Formula for omitted variable bias in very general framework, based on Riesz Representation ([Chernozhukov, Newey, and Singh 2022](#)) for ATT, see more details [here](#)

$$\text{bias}^2 = \rho^2 C_Y^2 C_D^2 S^2.$$

► Code



Estimand of Interest: ATT

Sensitivity Parameters (Chernozhukov et al. 2022)

- S^2 : Scaling factor that can be estimated from the data
- ρ^2 : Correlation of the confounding variation in terms of the outcome variable and the treatment variable, respectively
- C_Y^2 : (Nonparametric) partial R^2 of U with respect to Y

$$\begin{aligned} C_Y^2 &:= \frac{\text{Var}(\mathbb{E}[Y \mid D, X, U]) - \text{Var}(\mathbb{E}[Y \mid D, X])}{\text{Var}(Y) - \text{Var}(\mathbb{E}[Y \mid D, X])} \\ &:= R_Y^2 \end{aligned}$$

Estimand of Interest: ATT

Sensitivity Parameters (Chernozhukov et al. 2022)

- C_D^2 : Increase in the average odds of receiving treatment due to the presence of the unobserved confounder U

$$C_D^2 = \frac{\mathbb{E}[O(X, U)] - \mathbb{E}[O(X)]}{\mathbb{E}[O(X)]},$$

with odd ratios

$$O(X, U) := \frac{P(D = 1 \mid X, U)}{1 - P(D = 1 \mid X, U)},$$

and

$$O(X) := \frac{P(D = 1 \mid X)}{1 - P(D = 1 \mid X)}.$$

Estimand of Interest: ATT

Sensitivity Parameters (Chernozhukov et al. 2022)

- Implementation and results are based on a rescaled version that is bounded to $[0, 1)$

$$C_D^2 = \frac{R_D^2}{1 - R_D^2},$$

such that

$$R_D^2 := \frac{\mathbb{E}[O(X, U)] - \mathbb{E}[O(X)]}{\mathbb{E}[O(X, U)]}.$$

Estimand of Interest: ATT

Outlook: Type of results

- Given a confounding scenario that is parametrized in terms of C_Y^2 , C_D^2 and ρ^2 , we can bound the omitted variable bias (see [Chernozhukov et al. 2022](#) for more details)

However, how to get these scenarios?

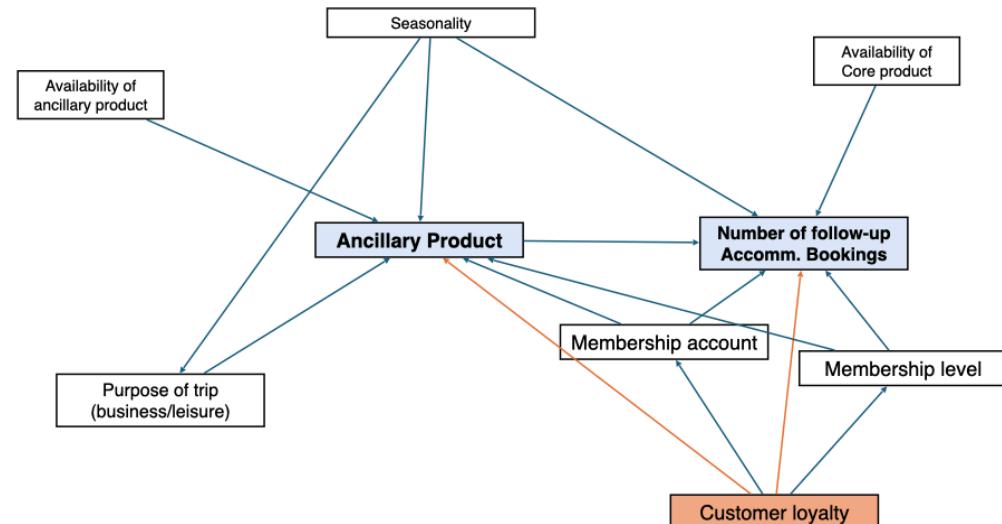
1. Domain expertise
2. Benchmarking (omitting known confounders)

- Standard reporting, in particular if no specific scenarios can be formulated: **Robustness values**
 - RV : Minimum symmetric confounding scenario that would suffice to explain away the reported estimate
 - RV_a : Take sampling variance into account (significance)

Sensitivity Analysis in a Use Case at Booking.com

Estimation and Sensitivity Analysis

- Estimation based on Double Machine Learning (DML) (Chernozhukov et al. 2018), [DoubleML](#) for Python, using [LightGBM](#) learners
- Sample: Visitors of the Booking.com websites and users of app in a pre-specified window of 6 months
- Preliminary results: ATT estimate of 0.123***, but robustness is questionable



Stylized DAG from use case at Booking.com.

Sensitivity Analysis in a Use Case at Booking.com

Estimation and Sensitivity Analysis

- ▶ Code

	coef	std err	t	P> t 	2.5 %	97.5 %
d	0.123	0.008	15.065	0.0	0.107	0.139

Sensitivity Analysis in a Use Case at Booking.com

► Code

```
===== Sensitivity Analysis =====

----- Scenario -----
Significance Level: level=0.95
Sensitivity parameters: cf_y=0.09187106073162674; cf_d=0.0028213335041910427, rho=1.0

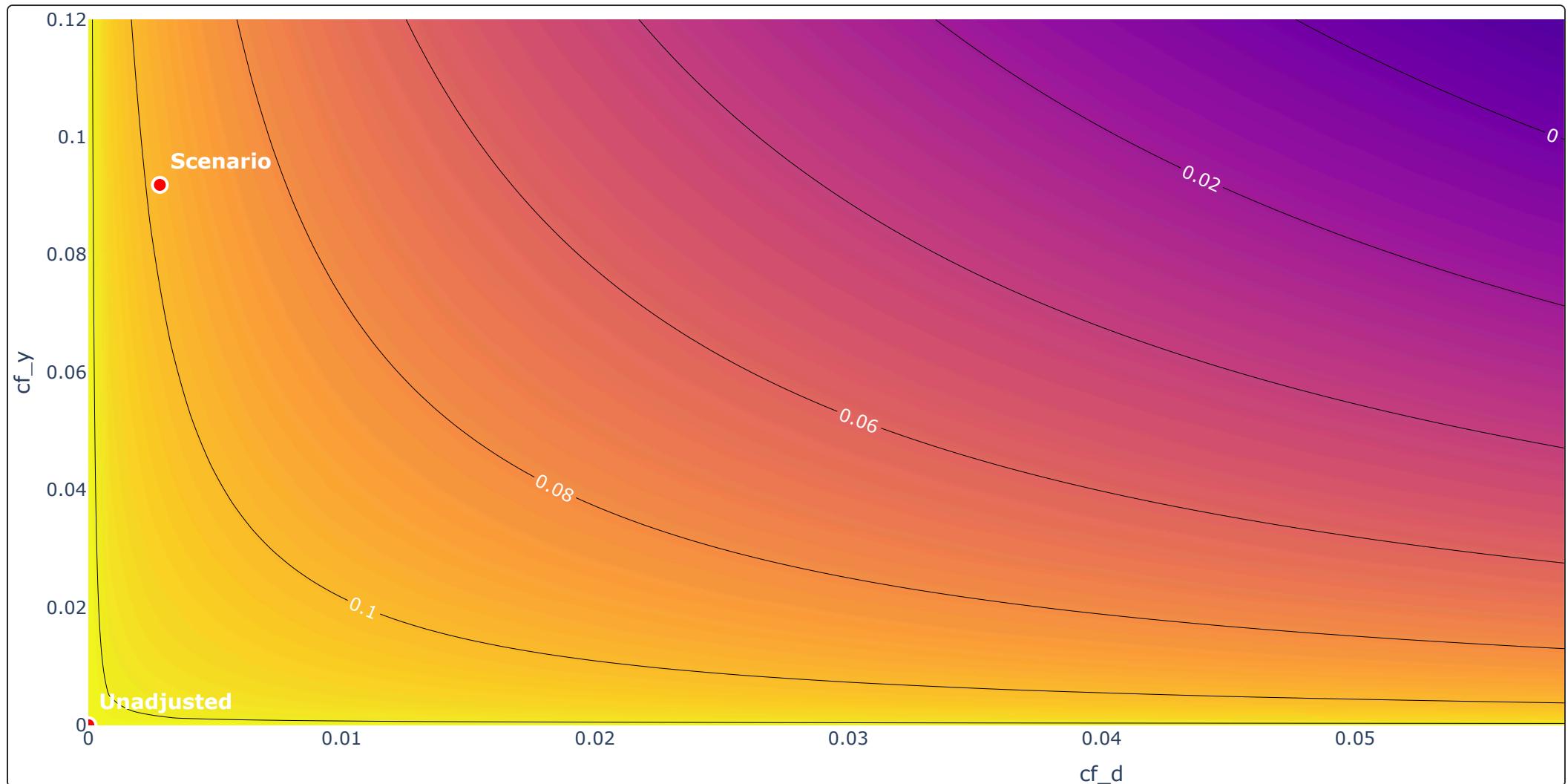
----- Bounds with CI -----
  CI lower  theta lower  theta upper  CI upper
d  0.084549    0.098    0.123192    0.148385  0.161839

----- Robustness Values -----
  H_0      RV (%)  RVa (%)
d  0.0    7.579216  6.779464
```

- RV : Unobserved confounders that explain less than 7.579% of the residual variation of the outcome and of the odds of treatment, are logically incapable of bringing the point estimate of the ATT to zero.
- RV_a : If we consider sampling uncertainty, this number reduces to 6.779% (at the 5% significance level).

Sensitivity Analysis in a Use Case at Booking.com

► Code



Summary and Outlook

Summary

- Discussions with domain experts and benchmarking scenarios point at a rather robust ATT estimate, although the preliminary estimate is probably biased upwards
- Sensitivity analysis was very useful to assess the robustness of the ATT estimate in the use case at Booking.com (standard step of causal workflow)
- Project helped to better understand the importance of identification and unobserved confounding, which is crucial in (observational) causal inference
- Link to domain experts was essential to define meaningful scenarios and to interpret the results
- Considerable impact on communication and decision-making processes (stakeholders, management); valuable insights for future research

Thank you!

Contact

In case you have questions or comments, feel free to contact us:

philipp.bach@uni-hamburg.de

Package Stickers

Get your **DoubleML** stickers after the talk 😊 & leave a ⭐ on GitHub:

<https://github.com/DoubleML/doubleml-for-py>

Acknowledgement

DoubleML gratefully acknowledges support by **Economic AI** 🙏

Economic AI - Causal ML for Business Applications.

ECONOMIC **AI**

Appendix

Identification under Unconfoundedness

The ATT can be from the distribution of observed data $W_s = (Y, D, X)$ under the following assumptions:

- *Unconfoundedness*: $\{Y(0), Y(1)\} \perp\!\!\!\perp D|X$,
- *Overlap*: $0 < P(D = 1|X) < 1$,
- *Consistency*: $Y = Y(D)$.

Riesz Representation: ATT

We are interested in the causal parameter θ_0 that can be identified as a linear functional of the long regression function $g_0 := \mathbb{E}[Y|D, X, U]$

$$\theta_0 = \mathbb{E}[m(W, g_0)],$$

where m is a formula that is affine in g_0 , W denotes the full data vector, $W = (Y, D, X, U)$.

Key idea: Express the long parameter θ_0 as the inner product of the long regression, and weights α_0 ,

$$\theta_0 = \mathbb{E}[m(W, g_0)] = \mathbb{E}[g_0(W)\alpha_0(W)],$$

where $\alpha_0(W)$ is called the Riesz representer of θ_0 .

Riesz Representation: ATT

- Riesz representers for the ATT

$$\alpha_0(W) = \left(\frac{D}{m_0(X, U)} - \frac{1 - D}{1 - m_0(X, U)} \right) \left(\frac{m_0(X, U)}{p} \right),$$
$$\alpha_s(W_s) = \left(\frac{D}{m_s(X)} - \frac{1 - D}{1 - m_s(X)} \right) \left(\frac{m_s(X)}{p} \right),$$

where $p := P(D = 1)$.

- More details in paper and references therein.

References

References

Bach, Philipp, Victor Chernozhukov, Carlos Cinelli, Lin Jia, Sven Klaassen, Nils Skotara, and Martin Spindler. 2024. "Sensitivity Analysis for Causal ML: A Use Case at Booking.com." In *Proceedings of the KDD'24 Workshop on Causal Inference and Machine Learning in Practice*.

Bach, Philipp, Victor Chernozhukov, Malte S Kurz, and Martin Spindler. 2022. "DoubleML-an Object-Oriented Implementation of Double Machine Learning in Python." *Journal of Machine Learning Research* 23: 53–51.

Bach, Philipp, Malte S. Kurz, Victor Chernozhukov, Martin Spindler, and Sven Klaassen. 2024. "DoubleML: An Object-Oriented Implementation of Double Machine Learning in R." *Journal of Statistical Software*. <https://doi.org/10.18637/jss.v108.i03>.

Blackwell, Matthew. 2013. "A Selection Bias Approach to Sensitivity Analysis for Causal Effects." *Political Analysis* 22 (2): 169–82.

Brumback, Babette A, Miguel A Hernán, Sébastien JPA Haneuse, and James M Robins. 2004. "Sensitivity Analyses for Unmeasured Confounding Assuming a Marginal Structural Model for Repeated Measures." *Statistics in Medicine* 23 (5): 749–67.

Carnegie, Nicole Bohme, Masataka Harada, and Jennifer L Hill. 2016. "Assessing Sensitivity to Unmeasured Confounding Using a Simulated Potential Confounder." *Journal of Research on Educational Effectiveness* 9 (3): 395–420.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018. "Double/Debiased Machine Learning for Treatment and Structural Parameters." *The Econometrics Journal* 21 (1): C1–68. <https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097>.

Chernozhukov, Victor, Carlos Cinelli, Whitney Newey, Amit Sharma, and Vasilis Syrgkanis. 2022. "Long Story Short: Omitted Variable Bias in Causal Machine Learning." National Bureau of Economic Research. <https://doi.org/10.48550/arXiv.2112.13398>.

Chernozhukov, Victor, Christian Hansen, Nathan Kallus, Martin Spindler, and Vasilis Syrgkanis. forthcoming. *Applied Causal Inference Powered by ML and AI*. online. <https://causalml-book.org/>.

Chernozhukov, Victor, Whitney K Newey, and Rahul Singh. 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects." *Econometrica* 90 (3): 967–1027.

Cinelli, Carlos, Jeremy Ferwerda, and Chad Hazlett. 2020. "Sensemakr: Sensitivity Analysis Tools for OLS in r and Stata." Available at SSRN 3588978.

Cinelli, Carlos, and Chad Hazlett. 2020. "Making Sense of Sensitivity: Extending Omitted Variable Bias." *Journal of the Royal Statistical Society Series B: Statistical Methodology* 82 (1): 39–67.

———. 2022. "An Omitted Variable Bias Framework for Sensitivity Analysis of Instrumental Variables." Available at SSRN 4217915.

Cinelli, Carlos, Daniel Kumor, Bryant Chen, Judea Pearl, and Elias Bareinboim. 2019. "Sensitivity Analysis of Linear Structural Causal Models." *International Conference on Machine Learning*.

Cornfield, Jerome, William Haenszel, E Cuyler Hammond, Abraham M Lilienfeld, Michael B Shimkin, and Ernst L Wynder. 1959. "Smoking and Lung Cancer: Recent Evidence and a Discussion of Some Questions." *Journal of National Cancer Institute*, no. 23: 173–203.

Dorie, Vincent, Masataka Harada, Nicole Bohme Carnegie, and Jennifer Hill. 2016. "A Flexible, Interpretable Framework for Assessing Sensitivity to Unmeasured Confounding." *Statistics in Medicine* 35 (20): 3453–70.

Frank, Kenneth A. 2000. "Impact of a Confounding Variable on a Regression Coefficient." *Sociological Methods & Research* 29 (2): 147–94.

Frank, Kenneth A, Spiro J Maroulis, Minh Q Duong, and Benjamin M Kelcey. 2013. "What Would It Take to Change an Inference? Using Rubin's Causal Model to Interpret the Robustness of Causal Inferences." *Educational Evaluation and Policy Analysis* 35 (4): 437–60.

Frank, Kenneth A, Gary Sykes, Dorothea Anagnostopoulos, Marisa Cannata, Linda Chard, Ann Krause, and Raven McCrory. 2008. "Does NBPTS Certification Affect the Number of Colleagues a Teacher Helps with Instructional Matters?" *Educational Evaluation and Policy Analysis* 30 (1): 3–30.

Hosman, Carrie A, Ben B Hansen, and Paul W Holland. 2010. "The Sensitivity of Linear Regression Coefficients' Confidence Limits to the Omission of a Confounder." *The Annals of Applied Statistics*, 849–70.

Imai, Kosuke, Luke Keele, Teppei Yamamoto, et al. 2010. "Identification, Inference and Sensitivity Analysis for Causal Mediation Effects." *Statistical Science* 25 (1): 51–71.

Imbens, Guido W. 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation." *The American Economic Review* 93 (2): 126–32.

Middleton, Joel A, Marc A Scott, Ronli Diakow, and Jennifer L Hill. 2016. "Bias Amplification and Bias Unmasking." *Political Analysis* 24 (3): 307–23.

Oster, Emily. 2017. "Unobservable Selection and Coefficient Stability: Theory and Evidence." *Journal of Business & Economic Statistics*, 1–18.

Robins, James M. 1999. "Association, Causation, and Marginal Structural Models." *Synthese* 121 (1): 151–79.

Rosenbaum, Paul R. 2002. "Observational Studies." In *Observational Studies*, 1–17. Springer.

Vanderweele, Tyler J., and Onyebuchi A. Arah. 2011. "Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders." *Epidemiology (Cambridge, Mass.)* 22 (1): 42–52. <https://doi.org/10.1097/ede.0b013e3181f74493>.

Zhang, Chi, Carlos Cinelli, Bryant Chen, and Judea Pearl. 2021. "Exploiting Equality Constraints in Causal Inference." In *International Conference on Artificial Intelligence and Statistics*, 1630–38. PMLR.

