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Motivation: Sensitivity Analysis & Use Case

Sensitivity Analysis

Causal inference is inherently based on untestable
assumptions

Standard assumption in observational studies
Unconfoundedness: Treatment assignment is independent
of potential outcomes given covariates (see details )

😱 Assumption might be very strong and difficult to
justify in practice (unobserved confounding)

Code

here

➡️ Sensitivity analysis as a tool to establish trust in our
estimates

🤔 How much can we trust our estimates when it is
violated?

DAG: Causal Effect of D on Y, with observed
confounders X and unobserved confounders U.
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Motivation: Sensitivity Analysis & Use Case

Use Case

Key question: What is the causal effect
of purchasing an ancillary product (taxi
transfer, flight, etc.) on follow-up
bookings?

Analysis based on observational data
(past transactions)

Major concern: Unmodelled
customer loyalty might affect users’
propensity to purchase ancillary
products and to make follow-up
bookings ➡️ Upward bias

Stylized DAG from use case at Booking.com.

The presented results are based on a simulated data set and cannot be used to recover the findings from the actual use case at Booking.com .
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Estimand of Interest: ATT

Average Treatment Effect on the Treated (ATT)

ATT measures the average impact on follow-up bookings that results from booking an ancillary
product

The ATT can be identified under the assumption of unconfoundedness (see details )

Sensitivity analysis based on Chernozhukov et al. ( ) and implemented in DoubleML for
Python ( )

= E[Y (1) ∣ D = 1] − E[Y (0) ∣ D = 1].θ0

here

2022
Bach et al. 2022
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Estimand of Interest: ATT

Sensitivity Analysis ( )

Long parameter (if we had access to the unobserved confounder(s))

Short parameter (only observed data)

Omitted variable / confounding bias:

Chernozhukov et al. 2022

= E[Y |D = 1] − E[E[Y |D = 0,X,U]|D = 1].θ0

= E[Y |D = 1] − E[E[Y |D = 0,X]|D = 1].θs

bias = | − |θs θ0
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Estimand of Interest: ATT

Sensitivity Analysis ( )

Idea of sensitivity analysis: Parametrize confounding in
terms of sensitivity parameters and assess confounding
bias in different scenarios

Extensive literature from statistics, econometrics and
computer science (see )

CodeChernozhukov et al. 2022

References

Chernozhukov et al. ( ): Formula for omitted variable
bias in very general framework, based on Riesz
Representation ( )
for ATT, see more details 

2022

Chernozhukov, Newey, and Singh 2022
here

= .bias2 ρ2C 2
Y C

2
DS

2

DAG: Causal Effect of D on Y, with observed
confounders X and unobserved confounders U.
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Estimand of Interest: ATT

Sensitivity Parameters ( )

: Scaling factor that can be estimated from the data

: Correlation of the confounding variation in terms of the outcome variable and the treatment variable,
respectively

: (Nonparametric) partial  of  with respect to 

Chernozhukov et al. 2022

S2

ρ2

C 2
Y R2 U Y

C 2
Y :=

Var(E[Y ∣ D,X,U]) − Var(E[Y ∣ D,X])
Var(Y ) − Var(E[Y ∣ D,X])

:= R2
Y
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Estimand of Interest: ATT

Sensitivity Parameters ( )

: Increase in the average odds of receiving treatment due to the presence of the unobserved confounder 

with odd ratios

and

Chernozhukov et al. 2022

C 2
D U

= ,C 2
D

E [O(X,U)] − E [O(X)]
E [O(X)]

O(X,U) := ,
P(D = 1 ∣ X,U)

1 − P(D = 1 ∣ X,U)

O(X) := .
P(D = 1 ∣ X)

1 − P(D = 1 ∣ X)
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Estimand of Interest: ATT

Sensitivity Parameters ( )

Implementation and results are based on a rescaled version that is bounded to 

such that

Chernozhukov et al. 2022

[0, 1)

= ,C 2
D

R2
D

1 −R2
D

:=R2
D .

E [O(X,U)] − E [O(X)]
E [O(X,U)]
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Estimand of Interest: ATT

Outlook: Type of results

Given a confounding scenario that is parametrized in terms of ,  and , we can bound the
omitted variable bias (see  for more details)

However, how to get these scenarios?

C 2
Y C 2

D ρ2

Chernozhukov et al. 2022

1. Domain expertise

2. Benchmarking (omitting known confounders)

Standard reporting, in particular if no specific scenarios can be formulated: Robustness values

: Minimum symmetric confounding scenario that would suffice to explain away the
reported estimate

: Take sampling variance into account (significance)

RV

RVa
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Sensitivity Analysis in a Use Case at Booking.com

Estimation and Sensitivity Analysis

Estimation based on Double Machine
Learning (DML) (

), DoubleML for Python, using
LightGBM learners

Sample: Visitors of the Booking.com
websites and users of app in a pre-
specified window of 6 months

Preliminary results: ATT estimate of
, but robustness is

questionable

Chernozhukov et al.
2018

0.123∗∗∗
Stylized DAG from use case at Booking.com.
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Sensitivity Analysis in a Use Case at Booking.com

Estimation and Sensitivity Analysis

Code

coef std err t P>|t| 2.5 % 97.5 %

d 0.123 0.008 15.065 0.0 0.107 0.139
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Sensitivity Analysis in a Use Case at Booking.com
Code

: Unobserved confounders that explain less than  of the residual variation of the
outcome and of the odds of treatment, are logically incapable of bringing the point estimate of the
ATT to zero.

: If we consider sampling uncertainty, this number reduces to  (at the 5% significance
level).

================== Sensitivity Analysis ==================

------------------ Scenario          ------------------
Significance Level: level=0.95
Sensitivity parameters: cf_y=0.09187106073162674; cf_d=0.0028213335041910427, rho=1.0

------------------ Bounds with CI    ------------------
   CI lower  theta lower     theta  theta upper  CI upper
d  0.084549        0.098  0.123192     0.148385  0.161839

------------------ Robustness Values ------------------
   H_0    RV (%)   RVa (%)
d  0.0  7.579216  6.779464

RV 7.579%

RVa 6.779%
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Sensitivity Analysis in a Use Case at Booking.com
Code

0

0.02

0.06

0.08

0.1

Scenario

Unadjusted
0 0.01 0.02 0.03 0.04 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

cf_d

cf
_y
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Summary and Outlook

Summary

Discussions with domain experts and benchmarking scenarios point at a rather robust ATT
estimate, although the preliminary estimate is probably biased upwards

Sensitivity analysis was very useful to assess the robustness of the ATT estimate in the use case at
Booking.com (standard step of causal workflow)

Project helped to better understand the importance of identification and unobserved
confounding, which is crucial in (observational) causal inference

Link to domain experts was essential to define meaningful scenarios and to interpret the results

Considerable impact on communication and decision-making processes (stakeholders,
management); valuable insights for future research
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Thank you!
Contact

In case you have questions or comments, feel free to contact us:

Package Stickers

Get your DoubleML stickers after the talk 😃 & leave a 🌟 on GitHub:
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philipp.bach@uni-hamburg.de

https://github.com/DoubleML/doubleml-for-py

Economic AI

Economic AI
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Identification under Unconfoundedness

The ATT can be from the distribution of observed data  under the following
assumptions:

Unconfoundedness: ,

Overlap: ,

Consistency: .

= (Y ,D,X)Ws

{Y (0), Y (1)} ⊥⊥ D|X

0 < P(D = 1|X) < 1

Y = Y (D)
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Riesz Representation: ATT

We are interested in the causal parameter  that can be identified as a linear functional of the long
regression function 

where  is a formula that is affine in ,  denotes the full data vector, .

Key idea: Express the long parameter  as the inner product of the long regression, and weights ,

where  is called the Riesz representer of .

θ0
:= E[Y |D,X,U]g0

= E[m(W , )],θ0 g0

m g0 W W = (Y ,D,X,U)

θ0 α0

= E[m(W , )] = E[ (W) (W)],θ0 g0 g0 α0

(W)α0 θ0
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Riesz Representation: ATT

Riesz representers for the ATT

where .

More details in paper and references therein.

(W)α0

( )αs Ws

= ( − )( ) ,
D

(X,U)m0

1 −D

1 − (X,U)m0

(X,U)m0

p

= ( − )( ) ,
D

(X)ms

1 −D

1 − (X)ms

(X)ms

p

p := P(D = 1)
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