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Motivation: Sensitivity Analysis & Use Case

Sensitivity Analysis

o Causal inferenceisinherently based on untestable > Code

assumptions

o Standard assumption in observational studies
Unconfoundedness: Treatment assignment is independent
of potential outcomes given covariates (see details here)

justify in practice (unobserved confounding)

Sensitivity analysis as a tool to establish trust in our
estimates

X
« (& Assumption might be very strong and difficult to D Dy
\ | /

&~ How much can we trust our estimates when it is .
DAG: Causal Effect of D on Y, with observed

violated? confounders X and unobserved confounders U.
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Motivation: Sensitivity Analysis & Use Case

Use Case

o Key question: What is the causal effect

of purchasing an ancillary product (taxi [ Seonaty s
tranSfeV, ﬂigh t’ etc.) On fo’low_up ancillary product
bookings?

Number of follow-up
| Ancillary Product |‘ Accomm. Bookings

o Analysis based on observational data / \\L\’Z ."

(past transactions) Membership account |1~

|‘I | Membership level
|

Purpose of trip [
(business/leisure) [

o Major concern: Unmodelled ,"

customer loyalty might affect users’ |
propensity to purchase ancillary

Stylized DAG from use case at Booking.com.
products and to make follow-up / g

bookings B3 Upward bias

The presented results are based on a simulated data set and cannot be used to recover the findings from the actual use case at Booking.com .
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Estimand of Interest: ATT

Average Treatment Effect on the Treated (ATT)
6 =E[Y(1) | D=1 -E[Y(0) | D =1].

o ATT measures the average impact on follow-up bookings that results from booking an ancillary
product

o The ATT can be identified under the assumption of unconfoundedness (see details here)

o Sensitivity analysis based on Chernozhukov et al. (2022) and implemented in DoubleML for
Python (Bach etal. 2022)
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Estimand of Interest: ATT

Sensitivity Analysis (Chernozhukov et al. 2022)

o Long parameter (if we had access to the unobserved confounder(s))
6 =E|Y|D=1]-E[E]Y|D =0,X,U]|D =1].
o Short parameter (only observed data)
0, =E|Y|D=1] - E[E[Y|D=0,X]||D=1].
o Omitted variable / confounding bias:

bias = |05 — 6]
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Estimand of Interest: ATT

Sensitivity Analysis (Chernozhukov et al. 2022) » Code

o |dea of sensitivity analysis: Parametrize confounding in
terms of sensitivity parameters and assess confounding
bias in different scenarios

o Extensive literature from statistics, econometrics and

X
computer science (see References) D Y
U

e Chernozhukov etal. (2022): Formula for omitted variable
bias in very general framework, based on Riesz
Representation (Chernozhukov, Newey, and Singh 2022)

for ATT, see more details here

DAG: Causal Effect of Don Y, with observed
confounders X and unobserved confounders U.

bias? = ,02013012)52.
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Estimand of Interest: ATT

Sensitivity Parameters (Chernozhukov et al. 2022)

. S2. Scaling factor that can be estimated from the data

. p2: Correlation of the confounding variation in terms of the outcome variable and the treatment variable,
respectively

o 012,: (Nonparametric) partial R? of U with respectto Y’

o2 . Var(E[Y | D, X,U]) — Var(E|Y | D, X])
Yoo Var(Y) — Var(E|Y | D, X])

= R%,
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Estimand of Interest: ATT

Sensitivity Parameters (Chernozhukov et al. 2022)

e C 12): Increase in the average odds of receiving treatment due to the presence of the unobserved confounder U

2 _ E[O(X, V)] - E[0(X)
g E0X)]

with odd ratios

P(D=1|X,U)

OX V) =1—pp=11x.0)

and

P(D=1|X)
1-PD=1]X)

O(X) :=
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Estimand of Interest: ATT

Sensitivity Parameters (Chernozhukov et al. 2022)

« Implementation and results are based on a rescaled version that is bounded to [0, 1)

R},

Ci=—"=2_,
P 1-R}

such that
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Estimand of Interest: ATT

Outlook: Type of results

« Given a confounding scenario that is parametrized in terms of C2, 012) and p?, we can bound the
omitted variable bias (see Chernozhukov et al. 2022 for more details)

However, how to get these scenarios?

1. Domain expertise

2. Benchmarking (omitting known confounders)

o Standard reporting, in particular if no specific scenarios can be formulated: Robustness values

= RV: Minimum symmetric confounding scenario that would suffice to explain away the
reported estimate

» RV, : Take sampling variance into account (significance)
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Sensitivity Analysis in a Use Case at Booking.com

Estimation and Sensitivity Analysis

e Estimation based on Double Machine
Learning (DML) (Chernozhukov et al. o
2018), DoubleML for Python, using iy /

LightGBM learners
| Ancillary Product I‘ ':l;rm:f;:gzm-;g

 Sample: Visitors of the Booking.com / \\L\’Z \

websites and users of app in a pre- __/ Membership amumembersmp _
. . urpose of trip [
specified window of 6 months uineseholrs) \ |
o Preliminary results: ATT estimate of [ Customer oyaty |

0.123***, but robustness is

g uestionable Stylized DAG from use case at Booking.com.
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Sensitivity Analysis in a Use Case at Booking.com

Estimation and Sensitivity Analysis

» Code

coef stderr t P>lt|] 25% 97.5%

d 0123 0.008 15.065 0.0 0.107 0.139
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Sensitivity Analysis in a Use Case at Booking.com

» Code

—————————————————— Scenario -
Significance Level: level=0.95
Sensitivity parameters: cf y=0.09187106073162674; cf d=0.0028213335041910427, rho=1.0

—————————————————— Bounds with CI bt
CI lower theta lower theta theta upper CI upper
d 0.084549 0.098 0.123192 0.148385 0.161839

—————————————————— Robustness Values ---—-——-—-—-———-—-—-——-
H O RV (%) Rva (%)
0.0 7.579216 6.779464

RV:Unobserved confounders that explain less than 7.579% of the residual variation of the
outcome and of the odds of treatment, are logically incapable of bringing the point estimate of the

ATT to zero.

RV, : If we consider sampling uncertainty, this number reduces to 6.779% (at the 5% significance
level).
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Sensitivity Analysis in a Use Case at Booking.com
» Code

[ 0.12

0.1

Scenario

0.08
>
| 0.06
O

0.04

0.02

0 0.01 0.02 0.03 0.04 0.05
cf d
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Summary and Outlook

Summary
 Discussions with domain experts and benchmarking scenarios point at a rather robust ATT
estimate, although the preliminary estimate is probably biased upwards

 Sensitivity analysis was very useful to assess the robustness of the ATT estimate in the use case at
Booking.com (standard step of causal workflow)

 Project helped to better understand the importance of identification and unobserved
confounding, which is crucial in (observational) causal inference

o Linkto domain experts was essential to define meaningful scenarios and to interpret the results

o Considerable impact on communication and decision-making processes (stakeholders,
management); valuable insights for future research
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Thank you!

Contact
In case you have questions or comments, feel free to contact us:

philipp.bach@uni-hamburg.de

Package Stickers

Getyour DoubleML stickers afterthetalk & &leavea = on GitHub:

https://github.com/DoubleML/doublemI-for-py
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Identification under Unconfoundedness

The ATT can be from the distribution of observed data W = (Y, D, X)) under the following
assumptions:

e Unconfoundedness:{Y (0),Y (1)} 1L D|X,
e« Overlap:0 < P(D =1|X) < 1,
o Consistency: Y = Y (D).
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Riesz Representation: ATT

We are interested in the causal parameter 8 that can be identified as a linear functional of the long
regression function g := E[Y|D, X, U]

0o = Elm(W, go)],

where m is a formula thatis affine in gg, W denotes the full data vector, W = (Y, D, X, U).

Key idea: Express the long parameter 6 as the inner product of the long regression, and weights ay,
0o = Elm(W, go)| = Elgo(W)ao (W)],

where iy (W) is called the Riesz representer of 6.
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Riesz Representation: ATT

o Riesz representers for the ATT

1-D )) mo(X, U)

D
(W) = (msl()x) 1 j;zsl()X)) (msz(aX)) |

wherep := P(D = 1).

o More details in paper and references therein.
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